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The Navier-Stokes equations and boundary conditions for viscous fluids of capillary size are formulated in
curvilinear coordinates associated with a geometry of the fluid-gas interface. As a result, the fluid dynamics of
drops and menisci, which takes into account the influence of gravitational forces and flows on the surface
shape, can be described. This gives a convenient basis for numerical studies. Estimations of the effects are
presented for the case of an evaporating sessile drop.

DOI: 10.1103/PhysRevE.79.025302 PACS number�s�: 47.15.�x, 47.11.�j, 68.03.�g

A number of important physical features in studying fluid
flows in evaporating liquid drops and menisci of capillary
size have been found recently both theoretically and experi-
mentally �1–8�. In particular, it was demonstrated that the
vortex convection takes place in evaporating drops and me-
nisci under various conditions �5–8�. The activity in the field
is associated now with important applications. Particular ex-
amples are the evaporative contact line deposition
�1,2,4,9–11�, studies of DNA stretching behavior and DNA
mapping methods �12–14�, developing methods for jet ink
printing �15–17�, and self-assembly of nanocrystal superlat-
tice monolayer �18–20�.

For describing the processes theoretically, one should
carry out, in general, a joint study of the fluid dynamics, the
thermal conduction, and the vapor diffusion together with
respective boundary conditions, in particular at the fluid-gas
interface. Standard approximations used in theoretical stud-
ies are a spherical cap shape of the drop or menisci and
neglect of the hydrodynamical pressure and velocities in the
generalized Laplace formula. Though such approximations
can be justified under certain conditions, there is a wide
range of parameters of the problem when a more accurate
theoretical description of liquid surfaces of capillary size is
needed.

The shape of a surface is, generally, controlled by the
combined effects of surface tension, gravitational forces, hy-
drodynamic pressure, and velocity distribution near the sur-
face. For solving fluid dynamics problems in the vicinity of
curved surfaces of an arbitrary shape, an explicit approach is
developed in the present paper, making use of “natural” cur-
vilinear coordinates associated with a surface geometry. Both
fluid dynamics equations and the respective boundary condi-
tions are formulated in these coordinates. Equations in such a
form are convenient for numerical simulations. We also
present analytical estimations for the effects in question for
the case of an evaporating sessile drop, which follow from
the obtained results.

The Navier-Stokes equations take the form

�v

�t
+ �v · ��v +

1

�
grad p = ��v . �1�

For simplicity, we assume below that the shape of the surface
as well as fluid flows is axially symmetric and v�=0, where
r ,� ,z are cylindrical coordinates. This property is valid for a
wide class of problems. Therefore, it is convenient to use
cylindrical coordinates in the bulk of an incompressible vis-
cous liquid and to introduce the vorticity �=�vr /�z−�vz /�r
and the stream function �, such that �� /�z=rvr and �� /�r
=−rvz �as distinct from the two-dimensional case �21��. Then
rot v=��r ,z�i� and the continuity equation div v=0 is natu-
rally satisfied. Equations for the quantities � and � are given
by

�

�t
��r,z� + �v · ����r,z� = �����r,z� −

��r,z�
r2 � , �2�

�� −
2

r

��

�r
= r� . �3�

In order to formulate equations close to the surface, it is
convenient to choose orthogonal curvilinear coordinates
xn�x ,y ,z�, x��x ,y ,z�, x��x ,y ,z� with local basis vectors nor-
mal and tangential to the surface at every point. In order to
write down in these curvilinear coordinates the differential
forms that enter the hydrodynamic equations, one needs to
find explicit expressions for the metric tensor and Christoffel
symbols for the chosen class of coordinate systems. Consider
both the contravariant coordinates xn ,x� ,x� and the respec-
tive physical curvilinear coordinates n ,� ,��. Locally dn is
the length along the normal to the surface, d� is the surface
arclength in the meridian plane, and d�� is the surface ar-
clength associated with the rotation angle around the z axis.
For an axially symmetric surface, d��=r�n ,��d�. For a dif-
ferential of radius vector, we have

dr = dxnen + dx�e� + dx�e� = dnin + d�i� + rd�i�, �4�

where e�= idx /dx�+ jdy /dx�+kdz /dx� are contravariant base
vectors. Unlike the contravariant base vectors en ,e� ,e�, the
Cartesian base vectors i , j ,k and physical curvilinear base
vectors in , i� , i� are orthonormalized: in=en /�gnn, i�*barash@itp.ac.ru
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=e� /�g��, i�=e� /�g��. The validity of the following relations
is necessary for constructing the contravariant basis:

�ei

�xj =
�e j

�xi . �5�

The unit vectors of the physical coordinate system do not
satisfy such a requirement, in contrast to contravariant basis
vectors, due to the difference in their normalizations. We
note that the requirement �5� will be satisfied if the local
angle 	 between the normal vector to the surface and the
symmetry axis depends only on x�, does not depend on xn

and x�, and

��

�x� = n
d	

dx� + f0�x��, i.e.,
�2�

�x��n
=

d	

dx� . �6�

Here the function f0�x�� is defined by the geometry of the
problem and, in particular, by the choice of the origin for the
coordinate n. For a spherical surface x��	, xn�n=R
��x2+y2+z2, x��	=� /n, x���, and r=n sin 	.

Relations �6� permit us to determine the contravariant ba-
sis near the surface: en= in, e�= i��� /�x�, e�=ri�. One obtains
for the basis the following components of the metric tensor:
gnn=1, g��= ��� /�x��2, g��=r2, g�n=g��=gn�=0, g=det gik
=r2��� /�x��2, and the corresponding Christoffel symbols


n�
� = 
�n

� =
�	

�x�

1

��/�x� , 
n�
� = 
�n

� =
sin 	

r
,


��
n = −

�	

�x�

��

�x� , 
��
� =

�2�

�x�2

1

��/�x� ,


��
� = 
��

� =
cos 	

r

��

�x� , 
��
n = − r sin 	, 
��

� = −
r cos 	

��/�x� .

�7�

The expressions for the metric tensor and Christoffel sym-
bols allow us to obtain explicit formulas for all differential
forms according to general rules of differential geometry
�22�. In particular, for an arbitrary vector F one finds

rot F =
1

r
� ��rF��

��
−

�F�

��
�in +

1

r
� �Fn

��
−

��rF��
�n

�i�

+ � �F�

�n
−

�Fn

��
+

d	

d�
F��i�. �8�

Therefore,

� = �rot v�� =
�v�

�n
−

�vn

��
+ v�

d	

d�
, �9�

�v = − rot��i�� = − in� ��

��
+

cos 	

r
�� + i�� ��

�n
+

sin 	

r
�� ,

�10�

�v · ��v = 	vn
�vn

�n
+ v�� �vn

��
−

d	

d�
v��
in

+ 	vn
�v�

�n
+ v�� �v�

��
+ vn

d	

d�
�
i�. �11�

Thus, the components of Eq. �1� may be rewritten as

�p

��
= − �	 �v�

�t
+ v�

�v�

��
+ vn� �vn

��
+ ��
 + �� ��

�n
+

sin 	

r
�� ,

�12�

�p

�n
= − �	 �vn

�t
+ vn

�vn

�n
+ v�� �v�

�n
− ��
 − �� ��

��
+

cos 	

r
�� .

�13�

In the more general case when v��0, the terms �v�
2 cos 	 /r

and �v�
2 sin 	 /r should be added to the right-hand member of

the Eqs. �12� and �13�, correspondingly.
The components of the viscous stress tensor �ik�

=���vi /�xk+�vk /�xi�, which describe momentum transfer
through the boundary, take the form

�nn� = 2�
�vn

�n
, �n�� = �� �vn

��
+

�v�

�n
− v�

d	

d�
� . �14�

The boundary condition at the surface is �21�

	P − pv − �� 1

R1
+

1

R2
�
ni = �� �vi

�xk
+

�vk

�xi
�nk −

��

�xi
.

�15�

The normal vector is directed here in the outward direction,
toward the atmosphere. Here pv is the pressure of the gas and
atmosphere, P is the hydrodynamic pressure on the surface,
R1,2 are the main local radii of curvature on the surface, and
� is the surface tension. Projections of �15� onto the local
tangential and normal directions to the surface are

d�

d�
= �� �vn

��
+

�v�

�n
− v�

d	

d�
� , �16�

P − pv = �� 1

R1
+

1

R2
� + 2�

�vn

�n
. �17�

Equation �16� is the boundary condition for the velocities on
the surface. In particular, one gets the boundary condition for
the vorticity at the surface:

� =
1

�

d�

d�
+ 2	v�

d	

d�
−

�vn

��

 . �18�

Boundary conditions for the stream function at the surface
may be obtained by integrating the expression �� /��
=−rvn���, where vn��� is the normal component of the veloc-
ity to the boundary. The boundary conditions for the stream
function are particularly simple if the motion of the surface
is much slower than the typical fluid velocities of the prob-
lem, when one can put vn�0.

Equation �17� represents the boundary condition that al-
lows one to obtain the shape of the surface. The pressure
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P��� satisfies the Navier-Stokes equations �12� and �13� with
corresponding projections of the gravitational force added to
the right-hand part of the equations. Therefore, the quantity
p���= P���+�gz satisfies Eqs. �12� and �13� without the ad-
ditional terms. To further simplify the equations and bound-
ary conditions, one can introduce the quantities p3���
− p3�0�= p���− p�0�−2��vn / ��n�0

�, p4���− p4�0�= p���− p�0�
+ ���v�

2+vn
2� /2�0

�, and k=R1
−1+R2

−1=d	 /d�+sin 	 /r, k0
= ��R1

−1+R2
−1���=0, z0= �z��=0. Then we get

p3��� − p3�0� = ��k − k0� + �g�z − z0� , �19�

d	

d�
= k0 +

p3��� − p3�0� − �g�z − z0�
�

−
sin 	

r
. �20�

In the particular case when one can disregard the term with
the pressure, Eq. �20� reduces to the Young-Laplace equation
in the form obtained in �23�. The tangential component �12�
of the Navier-Stokes equation may be represented as

dp4

d�
= − �� �v�

�t
+ vn�� + �	 ��

�n
+

sin 	

r
�
 . �21�

Equation �20� turns out to be quite convenient for determin-
ing the shape of the surface. The shape of an axially sym-
metric surface is unambiguously described by the function
	���. Because all expressions contain either the difference
p4���− p4�0� or the derivative dp4��� /d�, the initial value of
p4�0� is still an arbitrary constant. It is convenient to take

p4�0� = 2� �vn

�n


�=0
+��v�

2 + vn
2�

2


�=0
. �22�

Then

p3��� − p3�0� = p4��� − 2�
�vn

�n
−

��v�
2 + vn

2�
2

. �23�

Introducing the vector y= (r��� ,	��� ,z��� , p4���)T allows one
to represent Eqs. �20�, �21�, and �23�, dr��� /d�=cos 	,
dz��� /d�=−sin 	, in the form

dy

d�
= f��,y� . �24�

At the initial point one has y�0�= (r�0� ,	�0� ,z�0� , p4�0�)T.
Here p4�0� is defined in �22�. The Cauchy problem for the
system of differential equations �24� with initial conditions
derived above can be solved by standard numerical methods
to obtain the surface profile.

It is of interest to find out a relative role of terms in Eq.
�19� under specific physical conditions. Below we carry out
the respective estimations for an evaporating sessile drop ly-
ing on a substrate in the regime of a pinned contact line.
Evaporation results in an inhomogeneous spatial temperature
distribution in the drop and along the drop surface. The cor-
responding Marangoni forces result in vortex flows of the
liquid in the drop.

The motion of the surface is considered to be much
slower than typical fluid velocities. This property is valid for
a wide class of evaporating drops. Then one can take
approximately vn�0. The fluid motion is considered as a

quasistationary vortex flow. In the following expressions n0
is the characteristic distance between the surface of the
drop and the vortex center, r0 is the contact line radius,
��=−�� /�T, �T is the temperature difference between
the substrate and the apex of the drop, and �c is the contact
angle. Therefore, d	 /d��sin �c /r0 and d� / ��d���
−���T sin �c / ��r0�c�. Using the condition �16� and taking
n0 as a characteristic distance for a change of v� along
the normal to the surface, one obtains v����v� /�n�n0
=n0d� / ��d��+n0v�d	 /d�—i.e., v��1−n0 sin �c /r0��
−��n0�T sin �c / ��r0�c�—hence,

�v�� 
���Tn0

�r0
. �25�

Therefore �v�d	 /d����v��sin �c /r0�n0���Tsin2�c / ��r0
2�c�

����T / ��r0�, i.e., the term v�d	 /d� in �16� and �18� is
much smaller than d� / ��d��. It follows from �18� that

��� �
���T

��r0�
. �26�

It follows from ��2v� /�n2���v�� /n0
2 and

��

�n
=

�2v�

�n2 +
d	

d�

��

���
�27�

and �25� that

 ��

�n
 �

���T

�r0n0
� sin �c

�c
+

n0 sin �c

2r0
� �

���T

�r0n0
. �28�

We substitute �26� and �28� to �21� and integrate the obtained
expression over �. This gives the estimation of relative ef-
fects of pressures and velocities as compared with gravita-
tional forces in Eq. �19�:

p4��� − p4�0� �
���T�c

n0 sin �c
, 2�

�vn

�n


0

�

� p4��� − p4�0� ,

�29�

�p4��� − p4�0��
�gh

�
���T

�gn0h

�c

sin �c
, �30�

��v�
2/2�

�gh


1

2gh
�n0

�

���T

r0
�2

.

For estimating the term �v�
2 /2, we used �25�.

The ratio of gravitational force to the term with surface
tension in �19� is characterized by the dimensionless number
B0=�ghr0 / �2� sin �c�, which is analogous to the Bond num-
ber. Therefore, �30� may be represented as

�p4��� − p4�0��
���k − k0��

�
���T�c

2� sin2 �c

r0

n0
, �31�

��v�
2/2�

���k − k0��
�

�

4r0� sin �c
�n0���T

�
�2

.

Based on a geometry of the fluid surface, we have derived
Eqs. �12� and �13� and the boundary condition �19�, which
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allow one to obtain numerically a surface profile dynamics
and to take into account the influence of fluid dynamics and
gravitational forces on the shape of the fluid-gas interface.

The equations and boundary conditions derived in this
paper were used in �24� to find numerically the profile of the
evaporating sessile drop surface. According to Eq. �30�, the
effects of pressure become more important with an increase
of the temperature drop in the liquid and with the tempera-
ture derivative of the surface tension. The analytical estima-

tions �30� applied to the conditions of �24� show that the
relative contribution of pressures and velocities as compared
with gravitational forces in the Laplace formula �19� is not
too large. Numerical results confirm this qualitative conclu-
sion and give approximately one-tenth for the value of this
quantity under the conditions of �24�.

The author is grateful to V. V. Lebedev and L. N. Shchur
for useful discussions and remarks.
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